Протоколы TCP-IP

       

Мультиплексирование и программируемые соединения


В то время как точная топология NSFNET несущественна, технология, используемая ею, представляет большой интерес. Как часть своего проекта, MERIT, IBM и MCI обещали исследовать новые способы как сделать сеть переконфигурируемой. Предлагаемый ими план является более интересным, чем другие сетевые планы, так как он предполагал участие в его реализации MCI, производителя, который предоставлял средства связи на большие расстояния.

Чтобы понять возможности реконфигурации, рассмотрим, что обычно происходит, когда заказчик обращается к производителю средств дальней связи, чтобы тот выделил ему цифровой канал связи. Хотя заказчик может думать, что провод соединяет напрямую нужные ему два места, производитель выбирает путь для этого канала, который использовал бы уже имеющиеся кабели. Например, производитель может соединить заказчика через локальную станцию, оттуда через ближайший большой город, где производитель имеет магистральные линии связи, по магистральным линиям до другого большого города вблизи получателя, и наконец через локальную станцию с нужным ему местом. Более того, при современной технологии производитель предоставляет отдельный физический канал. На самом деле электронное оборудование на одном конце магистрального оптоволоконного кабеля мультиплексирует (объединяет) несколько каналов в этом оптоволоконном кабеле, а оборудование на другом конце демультиплексирует (разделяет) их, делая возможным для производителя добавление или переконфигурацию каналов с помощью электронной аппаратуры. Поэтому каналы магистральной сети NSFNET мультиплексировались в уже имеющемся оптоволоконном кабеле, принадлежащем MCI.

Предложение MERIT/IBM/MCI привело к возникновению интересного вопроса: "Если бы пользователи имели возможность переконфигурировать каналы с помощью электронной аппаратуры, то как бы они улучшили при этом работу сети?" Одним из путей является следующий. Владелец сети может следить за сетевым траффиком в течение долгого времени, а затем переконфигурировать каналы, чтобы обеспечить прямой путь между парами узлов, генерирующих наибольший траффик. Помимо добавления каналов, которые нужны, динамическая реконфигурация может позволить пользователю сэкономить деньги, освободив его платы за прямые пути между парами узлов с маленьким траффиком. Конечно, нельзя переконфигурировать базовые каналы, не перевычислив путей для коммутации пакетов.


Если бы пользователи имели доступ к тем же самым средствам переконфигурации, что и производители, они могли бы не только удалять и создавать каналы, а сделать гораздо больше. Они могли бы настроить пропускные способности каналов так, как им это надо. Такая настройка может оказаться важной, так как она может сэкономить достаточно много денег на неиспользуемой пропускной способности, чтобы платить за дополнительную пропускную способность, когда она нужна. Рассмотрим, например, NSFNET. В 8 утра на восточном берегу пользователи приходят на работу и начинают генерировать траффик, поэтому требуется большая пропускная способность для каналов, соединенных с машинами, находящимися на востоке. Тем временем, на западном берегу большинство пользователей еще спит, поэтому для каналов, соединенных с машинами на западном берегу, требуется меньшая пропускная способность. По мере того, как начинается день, пропускной способности следует постепенно смещаться к каналам западного берега. Поздним вечером, когда пользователи уходят из своих офисов на востоке, каналам западного берега требуется наибольшая пропускная способность.

С точки зрения производителя, предоставление пользователям возможности менять пропускную способность канала означает, что пользователи платят за фиксированную пропускную способность базовой физической сети, но они тем не менее могут выделить себе требуемую часть этой пропускной способности. Рисунок 2.14 иллюстрирует эту идею.

Как показывает рисунок , пользователь, который платит за пропускную способность Т в базовой физической сети, может выбрать, как разделить эту пропускную способность между нескольких каналов. Конечно, при конфигурации пропускной способности отдельных каналов пользователь должен быть уверен, что в любой точке физического кабеля суммарная величина пропускной способности не превышает Т. Главным недостатком такой схемы является то, что для того чтобы сделать корректное распределение пропускной способности, пользователь должен знать как топологию физической сети, так и пути в этой сети, назначенные его каналам.



Пропускная способность Т, выделенная в физической сети ------------------------------------------------------------- --------------------------------------- | --------------- -------------- | | | | | | | ------ | | ----------- | | ---------- | | ---------- | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ============ ============ ============ | Узел 1 | | Узел 2 | | Узел 3 | | | | | | | | | | | | | ============ ============ ============ | | | | | | C A A B B C

Рисунок 2.14 Три канала(A, B и C), которые могут быть переконфигурированы, пока они используют пропускную способность, меньшую чем Т, в любой точке магистральной сети. Например, каждый канал может иметь пропускную способность Т/2 или, если A и B имеют пропускные способности Т/3, то C может иметь - 2*Т/3.


Содержание раздела