Телекоммуникационные технологии.Сети TCP-IP

       

Имперсонация без обратной связи


Рассмотрим самый сложный случай: перехват и прослушивание данных, отправляемых из А в В невозможны. Этот случай (рис. 9.4) является наиболее общим: узел Х находится в сети, не имеющей никакого отношения к узлам А и В и не лежащей между ними (А и В могут находиться как в одной, так и в разных сетях).


Рис. 9.4. Имперсонация без обратной связи

Подчеркнем, что имперсонация без обратной связи имеет смысл лишь тогда, когда злоумышленнику для достижения своей цели достаточно только передать данные на узел А от имени узла В, и последующий ответ узла А уже не имеет значения. Классическим примером такой атаки является отправка злоумышленником на порт сервера Rlogin TCP-сегмента, содержащего какую-либо команду операционной системе узла А. Узел А выполняет эту команду, полагая, что она поступила с узла В.

Если имперсонация UDP-сообщений без обратной связи остается тривиальной, злоумышленник должен только сфабриковать датаграмму, адресованную от узла В узлу А, и отправить ее по назначению, то в случае с TCP все обстоит не так просто. Прежде чем отправить узлу А сегмент с данными, узел Х должен установить с ним соединение от имени узла В. Напомним, как происходит установление соединения: узел Х от имени В отправляет в А сегмент с битом SYN, где указывает начальный номер ISN(В). Узел А отвечает узлу В SYN-сегментом, в котором подтверждает получение предыдущего сегмента, и устанавливает свой начальный номер ISN(A). Этот сегмент злоумышленник никогда не получит.

Здесь возникает две проблемы: во-первых, узел В, получив от А ответ на SYN-сегмент, который он никогда не посылал, отправит узлу А сегмент с битом RST, тем самым сводя к нулю усилия злоумышленника. Во-вторых, узел Х все равно не сможет отправить в А следующий сегмент (как раз это должен быть сегмент с данными), потому что в этом сегменте узел Х должен подтвердить получение SYN-сегмента от А, то есть поместить в поле ACK SN заголовка своего сегмента значение ISN(A)+1. Но злоумышленник не знает номера ISN(A), потому что соответствующий сегмент ушел к узлу В.


Первая проблема решается относительно просто: злоумышленник проводит против узла В атаку типа «отказ в обслуживании» с тем расчетом, чтобы узел В не был способен обрабатывать сегменты, приходящие из А. Например, можно поразить узел В шквалом SYN-сегментов от несуществующих узлов1 (подробнее об отказах в обслуживании см. п. ). Впрочем, к облегчению злоумышленника, может оказаться, что узел В просто выключен.

Для решения второй проблемы злоумышленник должен уметь предсказывать значения ISN(A). Если операционная система узла А использует какую-либо функцию для генерации значений ISN (например, линейную зависимость от показания системных часов), то последовательно открыв несколько пробных соединений с узлом А и проанализировав присылаемые в SYN-сегментах от А значения ISN, злоумышленник может попытаться установить эту зависимость опытным путем.

Хорошая реализация TCP должна использовать случайные числа для значений ISN (более подробное обсуждение этого вопроса можно найти в RFC-1948). Несмотря на кажущуюся простоту этого требования, проблема с угадыванием номеров ISN остается актуальной и по сей день2.

2 В марте 2001 г. была опубликована информация о предсказуемости номеров ISN в Cisco IOS. См. также бюллетени CERT "Vulnerability Note VU#498440", "", работы [] и [].

Итак, приведем схему атаки для имперсонации TCP-соединения без обратной связи (рис. 9.5).



Рис. 9.5. Схема атаки с имперсонацией TCP-соединения без обратной связи

  • Злоумышленник выводит из строя узел В.
  • Злоумышленник делает несколько пробных попыток установить соединения с уз-лом А с целью получить от А последовательность значений ISN(A). Сразу после по-ступления SYN-сегмента от А злоумышленник разрывает наполовину установленное соединение посылкой сегмента с флагом RST. Проанализировав полученные значения ISN(A), злоумышленник определяет закон формирования этих значений.
  • Злоумышленник отправляет в А SYN-сегмент от имени В.
  • Узел А отвечает узлу В свои SYN-сегментом, подтверждающим получение SYN-сегмента от В, и указывает значение ISN(A) для этого соединения. Злоумышленник не видит этого сегмента.
  • На основе ранее полученных данных злоумышленник предсказывает значение ISN(A) и отправляет в А сегмент от имени В, содержащий подтверждение ISN(A)+1 и данные для прикладного процесса3. Получив этот сегмент, узел А считает соединение с В установленным и передает поступившие данные прикладному процессу. Цель атаки достигнута. Данные могут быть, например, командой, которую узел А выполняет, потому что она поступила от доверенного узла В.




  • 3 Узел Х может отправить подряд несколько сегментов с данными, пока он остается в рамках объявленного узлом А окна, размер которого он выяснил во время пробных соединений.

  • Узел А отправляет подтверждение получения данных и, возможно, свои данные в узел В. Злоумышленник этих сегментов не получит, но они его (по условиям задачи) и не интересуют. Чтобы корректно закрыть соединение, злоумышленник может вслепую отправить в узел А от имени узла В подтверждение получения одного октета (ACK SN=ISN(A)+2), а следом выслать сегмент с флагом FIN. Таким образом канал передачи данных от узла X (он же В) к узлу А корректно закрыт. Для полного закры-тия соединения злоумышленник должен подтвердить получение FIN-сегмента от А (равно как и всех данных, которые этому сегменту предшествовали) - разумеется, он этого сделать не может, потому что в общем случае ни объем этих данных, ни время отправки FIN-сегмента из А ему не известны. Но поскольку данные, переда-ваемые из А в В для злоумышленника ценности не имеют, он просто отправляет в А сегмент с флагом RST, тем самым полностью ликвидируя соединение.
  • Злоумышленник завершает атаку "отказ в обслуживании" против узла В.



  • Содержание раздела